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Abstract 

The method of joint probability distributions is applied 
for the estimation of two-phase and three-phase 
invariants when anomalous scatterers are present. The 
conclusive formulae are von Mises functions and give 
expected values of the phases lying anywhere between 0 
and 2z~ without ambiguity. 

Symbols and notation 

h = (h,k,l) vectorial index of a reflection 
f = f '  + i f "  atomic scattering factor; f '  is its real 

part and may include an anomalous 
real effect, f "  is its imaginary part, 
thermal factor is also included 

N number of atoms in the unit cell 
F h = F~ + F~' structure factor with vectorial index h, 

where 

N 

F~ = ~ f f  exp 2nihrj 
j = l  

N 

F~ '=  i Z f j '  exp 2nihrj 
j = l  

E h normalized structure factor 
Rh, ~h modulus and phase o rE  h 
Gh, q/h modulus and phase of E_ h. 

Other locally used symbols are defined in the text. 

1. Introduction 

Anomalous scattering effects occur because the atomic 
scattering factor is in general a complex number so that 
at a given wavelength a scattering component F~' for F h 
arises which has a phase advance over the F~ 
component. Because of this phase difference the 
structure amplitudes F h and F_ h of Friedel pairs of 
reflections are unequal for non-centrosymmetric 
crystals. 
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Anomalous dispersion methods are traditionally 
used: (i) to determine the absolute configuration of 
molecules and to resolve the well known twofold 
ambiguity in the phases determined by the single 
isomorphous replacement method (Bijvoet, 1949, 1951, 
1954); (ii) to determine the position of the anomalous 
scatterers by a Patterson synthesis with {Ifhl -- IF_hi } 2 
coefficients (Rossmann, 1961). 

The advent of synchrotron radiation as a tunable 
source for X-ray diffraction experiments has opened 
new prospects for the methods of crystal structure 
determination, particularly for the X-ray analysis of 
proteins. Indeed, the tunability of synchrotron radiation 
allows the use of a wavelength for which the anomalous 
component of the scattering factor even for not- 
so-heavy atoms becomes rather large. In this way it is 
no longer necessary to introduce heavy atoms in the 
protein structure in order to secure non-negligible 
anomalous dispersion effects. 

The joint probability distribution methods have 
already been applied by several authors to structure 
factors with complex scattering factors. Parthasarathy 
& Srinivasan (1964) derived the statistical distribution 
of the difference in intensity between Bijvoet pairs of 
reflections. 

Kroon, Spek & Krabbendam (1977) successfully 
incorporated anomalous dispersion techniques into 
direct methods by means of a procedure which 
generalizes the classical method of phase deter- 
mination from Bijvoet inequalities and involves the 
estimation of sine invariants. As in the classical case a 
twofold ambiguity (a, n - a) persists in the estimates of 
the invariants and no probabilistic criterion was 
suggested for ranking the estimates in order of 
accuracy. In a subsequent paper Heinerman, Krabben- 
dam, Kroon & Spek (1978) presented a statistical 
approach which leads to a joint probability of the phase 
~PI = ~Ph + ~Pk + ~P~ of a triple product and %i -- ~P-h + 
~P-k + tPh + k, the Friedel-related triple product. The new 
approach gives more accurate estimates of the sine 
invariants but is unable to overcome the twofold 
ambiguity (tx, n - ct). Since their theory uses triple- 
product magnitudes and not the magnitudes of the 
individual structure factors, the authors suggested the 
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use of the joint probability distribution function P(Eh, 
E_h, Ek, E_k, Eh + k, E~-;--k) in order to calculate more 
accurate values of the invariants. At the XIIth IUCr 
Congress in Ottawa, Hauptman (1981) presented some 
results arising from the study of the joint probability 
distribution P(Rh, Gh, ¢Ph, I//h)" On the same occasion 
results were also presented concerning the study of the 
six-variate aforementioned joint probability distri- 
bution P ( E h ,  Ek,  E h + k, E - h ,  E - k ,  E - h  - k)" Let us denote 

R l = IEhl , R2 = IEkl , R3 = IEh+kl , 

G I = IEhl , G2 = IEkl , G 3 = ]E_h_k]  , 

(/71 = ~h' (~2 = (~k' (~3 = (Ph + k' 

~ffl = ~-h' ~//2 = q~-k' I/'/3 = (P-h- k" 

The three-phase invariants 

(~3 = ~/1 -- ~2 + ~3 (~4 = (~I + ~2 -- (~3 

~5----q/1 + ~ ' 2 - ~ 3  ~6=~a~- -~2+~3  

(~7 = I/'/l -- ~02- IPt3 (~8 = ~1 + ~2 + I/'/3 

were estimates, given the six magnitudes R 1, R2, R a, 
G 1, G 2, G 3, via unimodal von Mises functions. 
According to Hauptman, the expected values of the 
invariants lie between 0 and 2zr without ambiguity. This 
result was unexpected in view of the fact that with the 
classical method it is impossible to obtain an unam- 
biguous result for the individual structure-factor 
phases. 

Hauptman's preliminary account did not give rise to 
the supposition that his primitive random variables 
were in direct space. For, in a paper on the four-phase 
structure invariant in P[  (Hauptman & Green, 1976), 
Hauptman still suggests (in polemic with the author of 
this paper) that using atomic coordinates as primitive 
random variables would lead to a distribution of 
structure factors less appropriate than that obtained 
when reciprocal vectors are considered as primitive 
random variables. 

Owing to the controversial results obtained by 
Hauptman we started with statistical calculations on 
this problem. For the sake of brevity the mathematical 
techniques are not described in this paper: a detailed 
account of them may be found in a recent book 
(Giacovazzo, 1980). 

In § 2 the joint probability distribution P(R h, Gh, ~0h, 
~'h) and related distributions are calculated: a com- 
parison with a result of Parthasarathy & Srinivasan 
(1964) is also given. We explicitly note that these 
authors were mostly interested in the distributions of 
the diffraction magnitudes and related quantities so 
they did not involve phases in their calculations. On the 
other hand, their theory is worked out for structures 
containing one, two and many anomalous scatterers 
(all assumed to be alike) in addition to a large number 

of non-anomalous scatterers. For the sake of simplicity, 
in our approach the number of anomalous scatterers is 
assumed to be large, even if of different type. Such a 
limitation should not be critical, and we expect that the 
application of our theoretical result may prove useful 
even in the cases in which one or few anomalous 
scatterers are present in the unit cell. Furthermore, our 
theory does not consider the case of structures with a 
large number of anomalous scatterers with a centric 
configuration, even if our results hold to a first 
approximation. Our conclusive formulas do not depend 
on the values of the overall isotropic thermal factor, 
which may be supposed unknown. Even if the formulas 
were explicitly derived in P1 they may be applied in any 
non-centrosymmetric space group provided none of the 
three reflections giving rise to the triplet is centro- 
symmetric. 

In § 3, the six-variate joint probability distribution 
function has been derived. In §4 the conclusive 
formulae estimating three-phase invariants are given. In 
§ 5 estimations are made about the information 
provided by the a priori  knowledge of the six 
magnitudes for the estimation of the triple invariants. 

Two new efforts are encouraged by the present 
theory: (i) the study of suitable joint probability 
distributions for the estimation of three-phase in- 
variants when two wavelengths are used for diffraction 
data collection. Such work is suggested by the advent 
of synchrotron radiation and the relative ease of 
performing two-wavelength experiments. The results 
could be useful for the structure determination of 
proteins on their own or as supports for geometrical 
two-wavelength techniques (Cascarano, Giacovazzo, 
Peerdeman & Kroon, 1982); (ii) a new formulation of 
the theory of representation of structure seminvariants 
and invariants (Giacovazzo, 1977) when different sets 
of diffraction data arising from the same or iso- 
morphous crystals are available. 

2. The joint probability distribution/~Rh, Gh, ~Th, q/h) 
and related distributions in PI 

In order to give statistical meanings to some basic 
parameters frequently used in this and the following 
sections we first calculate the characteristic function 
C(u 1, u 2, v~, v 2) of the distribution P(A h, A h, Bh, B ,), 
where u 1, u 2, v 1, v 2 are carrying variables associated 
with Ah, A_h, Bh, B-h. Ah and A-h are the real parts of Eh 
and E_h, respectively, B h and B_ h are the imaginary 
parts. 

We introduce the following notation: 

N 

Y = Z (f;2 + f;,2), 
j = l  
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the average value of IFhl 2 at a given I hl, 

N 

c, = Y ( f / 2_  f/ ,2)/y,  
J = l  

N 

c2 = 2 Z 4 '  4 ' ' / Z ,  
j = l  

c = [1 - (c 2 + c2)] 2. 

After some calculations we obtain: 

, 2 v~) C(Ul, u:, vl, v:) ~ exp{-~(ul  + u22 + v 2 + 

-½Cl(UlU2-V~V2) 
--  ½C2(Ul V 2 "[- U2Vl)}.  (1)  

The joint probability distribution P(Ah, A h, Bh, B h) is 
the Fourier transform of (1). If we make the variable 
changes 

u; = u , / = u : /  , f i ,  

,4 = v , l ,4 = v # v/-2, 

A', = = 

= v 8,, = 

we obtain 
1 1 

P(A~, A'h, B~,, BLh) - -  - -  

(2n) 2 ¢ ' c  

1 A2 2 x e x p  - - ~ ( A ~ 2 +  
Y 

+ B'I 2 + B~ 2 -  2ClA]Ar2 

+ 2c~B]B'2-- 2c2A]B'2 

- 2c2AIB])}, (2/ 

which is a four-dimensional normal distribution, c is the 
determinant of the matrix of second-order moments e 
given by 

C =  

i~ c, 0 ;2 
1 c 2 

c2 1 lCl  
C 2 0 --C 1 

We have thus defined the statistical meanings of c,, c 2 
and c which play a central role in the theory. 

By suitable variable changes the more useful 
distribution 

1 RhGh RE + G 2 
P(Rh, Gh, ~0h, q/h)-  n2 ~ exp V ~  

Rh Gh 
+ 2 ~ [C 1COS((ffh "[- q/h) 

Y 

+ c2 sin(0h + q/h)] (3) 
1 

is obtained. From (3) other relevant distributions may 
be obtained. For example: 

(a) The conditional probability distribution function 

where 

1 2R h G h 
e(~°h' q/hlRh' Gh) -- 4n2 Io(Q) exp k//. ~ 

× It, COS@h + q/h) 

C2 sin (~0 h + q/h)] ~, 

% 

+ 
) 

(4) 

2Rh Gh a - _ _  [c 2 + c2] v2. 

Denoting tp = ~0 h + q/h, the more useful conditional 
probability distribution 

P(cPlRh, Gh) ~ - - ~ e x p { Q  cos(cp-- q)} (5) 
2rd0(Q) 

is readily derived, where 

C1 C2 
cos q = sin q - 

[C21 -t- C22] 1/2' [C21 + C2211/2" 

Equation (5) is a v o n  Mises function, q is the most 
probable value of q~: a large value of the parameter Q 
suggests that the phase relation cp = q is reliable. If c2 
goes to zero (no anomalous scatterers) then c I goes to 1 
and c to zero so that (5) correctly becomes a Dirac 
delta function with q = 0. 

(b) The marginal probability density 

4Rh Gh R2 + G2 } Io(Q). (6) 
P(Rh, Gh)_ ~ exp V/~ 

In terms of diffraction intensities the distribution (6) 
becomes 

1 Ih + Jh/ 
P(Ih, Jh) ~ - ~ e  exp ~ c - ~  I°(Q)' 

where I h = R 2 and Jh = G~. Then the probability 
density for A = II h - Jhl is readily obtained: 

P(A) = c- ~ exp . (7) 

If we denote A, = Ale TM, from (7) (8) follows: 

P(A,,) = exp( -A, ) .  (8) 

In the Appendix we show that (8) is identical to a 
previous result [Parthasarathy & Srinivasan, 1964, 
equation (23)]. 



588 ESTIMATION OF TWO-PHASE AND THREE-PHASE INVARIANTS IN P1 

3. The joint probability distribution function 
P(Eh, Ek, Eh + k, E-h, E-k, E-h - k )  in P l  

We introduce the carrying variables Pi, Qi, Pi, qi, i = 1, 
2, 3, associated with R~, Gi, ~0~, ~t, i = 1, 2, 3, 
respectively. We calculate the characteristic function 
C(R~, G~, ~0f q/t, i = 1, 2, 3) retaining terms up to 1/V@- 
order. Its Fourier transform gives the required joint 
probability distribution function 

where 

P(R1, R2, R3, GI, G2, G3, (~l' ~02' (if3' I//1' I/'/2' I//3) 

o0 o0 2n 27r 
RIR2R3 GI G2 G3 f f f f 

0 0 0 0 

x QiQ2Q3exp i ~. [RiPicos(~ot-pi ) 
i=1 

3 
G i Q i c o s ( ~ - q i ) l -  ~. [¼(P~ + Q~) 

i=l  

½¢liPi Qi cos(pi + qi) 
½¢2iPi Qi sin(pi + q~)l 

i[t t  Ql  Q2P3 cos(ql + q2 +P3) 

bl Ql Q2P3 sin(ql + q2 +P3) 

t2 Pl Q2 P3 cos (pl -- q2 --P3) 

bEPl Q2P3 sin(pl - q2 --P3) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

t3 QI P2P3 cos(qi - P 2  + P3) 

b3 Q1P2P3 sin(ql - P 2  + P3) 

t4 P1 P2 P3 cos (p i + P2 - P3) 

b4PIP2P3 sin(pl + P2 - P 3 )  

t4 Q~ Q2 Q3 cos(ql + q2 - q3) 

b4 Qt Q2 Q3 sin(q1 + q2 - q3) 

t3Pl Q2 Qa cos(pl  - q2 + q3) 

b3Pl Q2Q3 sin(pl - q2 + q3) 

t2 QIP2 Q3 cos(ql - p 2  - q3) 

b2 Ql P2 Q3 sin(ql - P 2  - q3) 

tlPiP2Q3 cos(pl  +P2 + q3) 

+ blPIP2Q3 sin(pl +P2 + q3)]} dpxdP2dP3 

x dql dq2 dq3 dP l dP 2 dP 3 dQl dQ2 dQ3, 

c'3 = [ ~ ff2(h + k) - fJ"2]/Z3, j : ,  

C21 = 2 [j=~ 1 f j (h)  f j ' ] / Z , ,  

c22 = 21i=~ f/ '(k) f / " ] /Z2,  

c23=2[~ff(h+k)ff ']/Z3')=l 

N 
/'-2] Vl : Y [ f / ~ ( h ) + j j  j, 

j = l  

N 
[7 '2 ] Zz = Z [ff2(k) + Jj , 

j = l  

N 
f-2] ~'3 = ~ [fj'2( h + k) + j j  j, 

j = l  

1 N 
t, (Y, Z~ Z3) ''~ ~ 

j= l  
_ f,,2[ f ' (h)  + d j ../ j 

1 N 

j = l  
+ ~'(h) ~'  (h + 

t 2 

{fj(h) f f (k)  f j ' (h + k) 

f/(k) + f/(h + k)] }, 

{ fj" [ fj' (h) fj' (k) 

k) + fj '(k) f j ' (h + k ) ] -  fj,,3}, 

1 N 
/fj'(h) fj'(k) fj'(h + k) (Z, Z: y3) 1,~ 

j 1 *= 

+ yj"2[-fj'(h) + ~'(k) + fj'(h + k)]}, 
1 N 

b2 = (y ,  y~ Z3),,~ ..X. {Z"[Z '(h) f / (k )  
j l 

+ fj '(h) f j ' (h + k) -- fj '(k) f j ' (h + k)] + fj .3},  

1 N 

t 3 =  (ZI  Z2~"  ~1,2 ~ { f f ( h ) f f ( k ) f j ( h  + k) 
,'.3/ j= l  

+ -,J£"'2[*JJ£' (h) -- fj' (k) + f j ' (h + k)]}, 

1 N 

b3 = (~ ' l  ~'2 ~3)  1/2 ~ 
j = l  

- fj '(h) f j ' (h + 

I N 

t4 = (Z1 Z2 Z3) '/2 Z 
j = l  

+ ~"2[~'(h) + 
1 N 

b4 -- ( Z I  Z2 Z3)  1/2 ~ 
j = l  

+ ~ ' ( h ) £ ( h  + 

I fj" [ fj'(h) fj' (k) 

k) + f f ( k ) f f ( h  + k)] + fj'3}, 

{ fj' (h) fj' (k) fj' (h + k) 

fj '(k) - f j ' (h + k)]l, 

{ fj" [--fj' (h) fj' (k) 

k) + fj'(k) fj'(h + k)] + fj"3/. 
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The  compl i ca t ed  definit ions arise f rom the fac t  tha t  we 
c a n n o t  a s s u m e  an identical  un i t a ry  sca t te r ing  curve  for 
the var ious  a toms .  Af te r  lengthy ca lcula t ions  we obta in  
the fol lowing jo in t  p robabi l i ty  dens i ty :  

P ( R I ,  R2, R3,  G~, G2, G3, tpl , f72, ~3, I//1, I//2, I//3) 

1 1 

'~ ~---6 R I R2 R3 GI G2 Ga (c~ c 2 c3) 1/2 

l± 1 x exp ~ [ - R ~ -  G~ 
V~.-i Xi=l 

+ 2¢1tR t G~ c o s ( o / +  N/) 

+ 2e21RiG i s i n ( o / +  ~'t)1 

+ T1 GI G 2 R 3  c°s( l f f l  + I/'/2 + (if3) 

+ B 1 G 1 G 2 R  3 sin(~q + ~,2 + ¢3) 

+ T2R~ G 2 R 3  cos((ffl - -  [ff2 - -  ~/)3) 

+ BERI GER3 s in(~l  --  ~ 2  - -  % )  

+ T3G~RER 3 c o s ( ~ l -  ~o 2 + ~o3) 

+ B3 G I R E R 3  s in (~ l  - -  ~2 -4- ~3) 

+ T4R1R2R3 c°s(tPl + ~ 2 -  ~03) 

+ B4R~R2R3 sin(tPl + t P 2 -  (if3) 

+ T 4 GI G2 G3 cos(Ip '  1 + 1if2 - I/,/3) 

+ B 4 G~ G 2 G 3 sin(~,  1 + V2 - ~'3) 

+ T3R ~ G2G 3 cos(tp~ - ~2 + ~g3) 

+ B 3 R ~ G2 G3 sin ( ~  - ~2 + ~'3) 

+ T 2 G I R 2 G  3 c o s ( ~ l  - tp2 - ~,s) 

+ B 2 G~ R 2 G 3 sin(~,  1 - ~02 - ~'3) 

+ TIR~R2G3 c o s ( ~ l  + ~02 + ~3) 

+ B i R ~ R 2 G 3  sin(t~l + t~2 + ~3) / ,  
) 

(9) 

where  

c i = [ 1 - ( c ~ i + c 2 2 t ) ]  2, i = 1 , 2 , 3 ,  

T 1 = 2 ( c 1 3 S 2 - c 2 3 S  4 - SI)/V/'c'3, 

T2~- 2(c13S 6 + c23S 8 -  Ss)/V/~ 3, 

Y 3 = 2(c13 S5 - -  C23 S 7  - S6)/V/~3, 
T4---- 2(c13 S 1 + c23S 3 - $2)/V/~3, 

B 1 = 2(C13 S 4 + c 2 3 S  2 - -  S3)/V/~3, 
B 2 :  2(c13Ss - - c23S  6 -- S7)/~/'c'3, 
B 3 = 2(cla $7 + c 2 3 S 5 -  Sa)/V/-C3, 

B4 = 2 ( c 1 3 S 3 - c 2 3 S  1 - S4)/Vfc'3. 

S 1 : ( - - Z  2 q- c12Z3--c22ZT)/~/~2,  

and  

S 2 = 

S s : 

S 4 : 

S 5 = 

S 6 = 

S 7 = 

S 8 = 

( - - Z  1 "4- c12Z4- -c22Z8) /V / -C2 ,  

(_Z6 + c12Z~ + c2~Z3)/V'72, 

(-z~ + c1~z~ + c2~z4)/v/-d. 

(-z, + cl~zl + c~z5)/C-d~, 

( - z3  + c ~ Z ~  + c~2Z6)/V/-d2, 

(-z~ + c , ~ z , -  c~z,)/v'7~, 

( - -Z7  + c12 Z6 --  c22 Z 2 ) / ~ 2 ,  

Z I = 

Z 2 = 

Z 3 = 

2 4 = 

Z 5 = 

Z 6 = 

Z 7 = 

Z s = 

(t 4 --  Cll ta - c21 ba)/V/Cl, 

(t 1 - Cll t2 + c21 b2)/V/Cl, 

(t a - Cll t4 - c21 b4)/X//cl, 

(t  2 - c , i  t , -  c21 b l ) l ~ - c  ,, 

(b4 + Cll b3 - c2, t3)/V/~l,  

(b 1 - cll b2 - c21 t2)/V/Cl, 

(b 3 + cll b4 - CEl t4)/V/Cl, 

( - b  E + cll bl - c21 t l) /V/~l.  

F r o m  (9) 
ob ta ined  by  appl ica t ion  of  s t a n d a r d  techniques :  

P(~°I, ~2, ~3, ~//1, ~//2, ~31Ri, Gi, i = 1, 2, 3) 

1 / 
~_ ~ exp _ [R 1GiAot c o s ( o / +  ~'i - ~o/)1 

g t--1 

the condi t ional  probabi l i ty  dis t r ibut ion (10 ) i s  

+ G1 G 2 R 3 A 1  cos( Ig l  + I//2 + ¢P3 - ~1) 

+ R1 G 2 R 3 A 2  c ° s  ((~1 - I/'/2 - -  (if3 - ~2) 

+ G1R2R3A 3 cos(~q  - tp2 + % - ~3) 

+ R1R2R3A4  cos(tPl + ~°2 --  tP3 - ~4) 

+ G 1 G 2 G3A 4 cos(~q  + ~'2 - ~'3 - ~4) 

+ R 1 G2 G3 A 3 cos (~01 - ~2 + ~3 - ~3) 

+ G I R  2 G3A 2 c o s ( g f i -  ~02 - ~ ' 3 -  ~2) 

+ R 1 R 2 G 3 A I  c°s(~°l + ~°2 + ~'3 - ~1)],  
) 

(lO) 

where  L is a cons t an t  whose  value is not  cri t ical  for  our  
purposes ,  

) 1/2 c], + c~i 
Aoi = 2 

Cl 

C21 

COS ~0i 
Cli 

(c~. + c~i) ''~' 

sin ~0i = (c2i + c2i)1/2, i :  1, 2, 3; 

R2~1/2 A/=  (:r~ + B~) ''2, cos ¢i= Ti / (T~ + ~ ,  , 

sin ¢~ = B i / ( T  2 + B~) l/2, i =  1, 2, 3, 4. 
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It may be noted that Ao~ are terms of order 1/(N) °, 
while the other terms, Ai, are of order 1/v/N(however,  
the A :s  may have large moduli). 

indication ~ = o.) 1 may be very high even for large 
structures because it depends on eight contributions all 
of order 1 / 

4. Some useful conditional probability distributions 

For practical applications it is useful to know the 
conditional probability distributions of the various ¢~ 
given the six magnitudes R,, R 2, R 3, Gt, G2, G3. Some 
probabilistic considerations will be made for the 
conditional probability P(ChIRt, Gi, i = 1, 2, 3) which 
are also valid for the other distributions P(CgjIRt, Gi, 
i - -  1,2,3). 

We will use in this section the function D(x) = 
Ix(x)/Io(x), where I 0 and I1 are the modified Bessel 
functions of order zero and one, respectively, according 
to the following notation: 

D~ = D(Aot R 1 G1) , D 2 = D(Ao2R 2 G2) , 

D 3 = D(A03 R3 G3). 

(a) The conditionalprobability P ( ~  IR t, G~, i = 1, 2, 3) 
We obtain 

1 
P(~ l l . . . )  ~_ exp[-01 cos (~  I - col)] , 

2rdo(-0,) 

where -or = [01 + 7? ]1/2, 

Ot = [G t G2R3A 1 cos C1 + Rl G2R3A2DI cos(C2 - Col) 

+ G1RER3A3D2 cos(C3 + ~2) 

+ GIG2G3AaD3 cos(C4 + ~3) 

+ R,R2R3A4DID2cos(C4-~oI-Co2)  

+ RIG2G3A3DID3cos(C3-Col-Co3) 

+ GIR2G3A2D2D3 cos(C2 + ~2 + C03) 

+ RIR2G3A1D1D2D a 

X COS(C 1 -- C o l -  ~ ) 2 -  ~(13) ], 

71 = [GI G2RaA1 sin C1 -- RI G2RaA2D1 s in(~2 - Col) 

+ GIR2R3AaD2 sin(C3 + ~2) 

+ GtG2G3A4D3 sin(C4 + (.o3) 

- -  RtR2R3A4D 1D 2 sin (C4 --  C 0 1 -  C02) 

-- R1 G2 G3A3DI  D3 sin(C3 - C o l -  C03) 

+ G1R2GaA2D2D3sin(C2 + C02 + C03) 

- R1R 2 G3AI DI D2D 3 

x sin(C1- Col-  C02- C03)]' 

cos co I = 01/-01, sin o) 1 = 71/.01" 

oo l, the expected value of q0 l, may lie anywhere 
between 0 and 2n. The reliability of the phase 

(b) The conditional probability P( ~41R i, Gi, 
i = 1, 2, 3)* 

We obtain 
1 

P(~41...) - exp[-0 4 cos (~  4 - c04)], 
2 7rJo(-0 4 ) 

where 04 = [042 + 742] in, 

04 = [RI R2R3A 4 cos ?._4 + GI R2R3A3 D 1 cos(C3- COl) 

+ R1G2R3A2D2 cos(C2 + C02) 

+ R1 R2 G3AI D 3 COS(C1 - ~ 3 )  

+ R1G2G3AaD2Dacos(C3 + C02 - C03) 

+ GIR2G3A2DID3 cos(C2-Col + CO3) 

+ G, G2R3,4,D, D2cos(C,-Co,-C02) 

+ G1GEGaA4DID2D 3 

X COS(C 4 -- COl -  C02 + C03)]' 

~4 = [R1R2RaA4 sin ~ - G 1R2RaA 3 D l sin(Ca - C01) 

+ RI G2R3A2D2 sin(C2 + ~02) 

+ RI R2 GaAI 9 3 sin(Cl -- C03) 

+ RIG2G3A3D2Dasin(C3 + ~2--  C03) 

- - G I R 2 G a A 2 D 1 D 3  s i n ( C 2 - ~ l  + C03) 

- Gl G2R3A, 01 92 sin(C1- COl- C02) 

-- GIG2GaA4DID2D 3 

× sin(C4- ~ l -  C02 + ~3)], 

cos 094 = 04/.04, sin 094 = 74/.04. 

(c) The conditional probability P(~oil...) or P(~il. . .) 

In the usual applications of direct methods a phase 
~0 h is assigned when at least one pair of phases ~0k and 
~°h + k and three moduli are a priori known. The theory 
developed in this paper suggests that a larger variety of 
a priori information may be conceived. Some examples 
are described below in order to show how different may 
be the conclusive formulae in different situations. For 
the sake of simplicity, in the examples we constantly 
assume that the six magnitudes are a priori known. 

Let us suppose that ~02 and ~03 are known but ~'l, ~2, 
~'3 are unknown. Then ~01 may be assigned by means of 
the von Mises distribution 

*The other conditional probability distribution equations 
P(~:IR i, G i, i = 1, 2, 3) have been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 38435 (7 
pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography. 5 Abbey Square, Chester 
CH 1 2HU, England. 
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1 
P((011...) - exp{ . (24  c o s ( ( 0 1  - -  "L- 1 - -  0.)4) } (11) 

2~0(n,) 

where r~ = -(02 + (03.04 and co 4 are defined below. A 
different formula must be applied for the estimation of 
(01, when (02, (03, ~q, ~'2, ~'3 are all a priori known. We 
obtain 

I 
P ( ( 0 1 l . . . )  - -  exp{.O~ cos( (0 , -  ~,~)} (12) 

2rd0(O~) 

where ~ - -  [8~ 2 + y~2]1/2, 

0~ : [ R  l G I A 0 1 C O S ( ~ / 1  - -  ~01) 

+ RI G2R3A2 c ° s ( I P ' 2  + (03 + ¢2)  

+ R1R2R3A4 c0s((02- (03- ~4) 

+ R~ G 2 G3A 3 cos(I//2 - Ipr 3 -f" ¢3) 

+ RIR2G3AI  c°s((02 + ~3-- ~1)], 

7J = [--RI GIA01 sin(~l - (~01) 

+ R1G2R3A2 sin(~2 + (03 + ~2) 

-- R1 R2 R3A4 sin ((02 -- (03 - -  ¢4)  

+ R1 G2 G3A3 s i n ( ~ 2  - 1/13 + ¢3) 

- R 1 R 2 G 3 A  1 sin((02 + ~ '3-  ~1)], 

COS (.O~ = 0,~/~c~4, sin O)~ = y 4 / ~ 4 .  

As a final example we suppose that (02, (03, I/'/2' I/'/3 are 
known a priori and ~'1 is unknown. Then (01 may be 
estimated via the von Mises distribution 

P((0,1...) _ exp{O~' cos((01- o9~')}, (13) 

+ RI G2 G3A3 sin(~2 - ~3 + ~3) 

- GIR2G3A2DI sin((02 + ~3 + ~ 2 -  ~01) 

- R I R 2 G 3 A I  sin((02 + ~3 - ~1)], 

cos09~' A,,/o,, sin " " " = v4 / ' ~ 4 '  ('O4 = ~/4 / " ~ 4 "  

Equations (11), (12) and (13) are very different from 
one another. Indeed, q,~ contains a term of order 
1/(N) ° and four terms of order 1/X/~, while .O 4 an~_d 
12~' (.(24 =/= ~ ' )  contain only terms of order 1/v/N. 
Other examples may be easily conceived. It is clear 
now that different amounts of a priori information 
produce different probabilistic formulae which, in their 
turn, may be readily obtained by standard techniques 
via the distribution (10). 

5. Conclusive remarks 

While this paper was under examination by the referees 
the paper by Hauptman (1982) on the same subject 
appeared in A eta Cryst. A comparison between the two 
papers is mandatory. 

The following may be observed: 
(a) In spite of the quite different notation, the 

conclusive formulae coincide. That is not surprising: 
indeed this time Hauptman preferred to use, according 
to our habit, the atomic positions as the primitive 
random variables. Two incongruities (probably clerical 
errors) were found in Hauptman's paper: (1) on p. 636, 
where Y3 is defined, the line 

Crird[1- (Cn CK CL - Cn S~: SL 

should be replaced by 

c,,~z[1- (c,, c,, Q + c.s,,s~; 

where .f2~' = [0~ '2 + y~,2]v2, 

0~'= [G 1G2R3AID 1 cos(~2 + (03- ~1 + Cos) 

+ RI G2R3A2 c°s(I//2 + (03 + ~2) 

+ GIR2R3A3D1 c°s((02-  (03 + ~ 3 -  ~01) 

+ RIR2RaA4 c°s((02-- (03-- ~4) 

+ G 1 G2 G3 A4 

+ R 1 G2 G3A3 

+ G~ R 2 G3A 2 

D1 c° s (~ ' 2 -  ~ '3 -  ~4 + ~01) 

cos(~ ,2-  ~3 + ~3) 

DI c°s((02 + ~3 + ~ 2 -  ~01) 

+ RIR2G3A 1 c o s ( ( 0 2  + I/13 - ¢1)]  , 

y~' = [GI G2R3AIDI sin(~,2 + (03- ¢1 + ~01) 

+ R~ G2R3A 2 sin(~2 + (03 + ¢2)  

-- GIR2R3A3DI sin((02- (03 -t- ¢3 - -  ¢02)  

-- RIR2R3A 4 sin((02 - (03 - ¢4)  

+ Gx G2 G3A4 D1 sin(~2 - .  1/13 - ¢4 - ¢01)  

(2) on p. 637, where C~ is defined, the line 

+ ~3 + ~2)+ RiR~R~cos  ~21 

should be replaced by 

+ ~3 + if2) + R~R2R~cos ~21. 

(b) The conclusive formulae estimating triplet in- 
variants are unimodal and are not in complete 
agreement with some probabilistic results by Heiner- 
man et al. (1978). We cannot conclude that those 
results are wrong because in our approach, as in 
Heinerman et al.'s approach, a number of approxi- 
mations were introduced which may be responsible for 
the disagreement. For example, a critical point in our 
mathematical approach (as well as in Hauptman's  
procedure) is the passage from (10) to the various 
conditional probability distributions P( ~jlR i, G i, 
i = 1, 2, 3). We had to integrate exponential expressions 
containing a term of order N O and several terms of 
order N -1/2. In order to obtain simple final distri- 
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butions we approximated the terms of order N -1/2 by 
the formula e x ~_ 1 + x without considering the fact 
that, when anomalous dispersion is present, terms of 
order  N -1/2 may be numerically equivalent to the 
N°-order terms. The final formulae estimating Oj were 
von Mises distributions but it is very likely that the true 
distributions are not of von Mises type. 

(c) Hauptman's and our procedure estimate triplet 
invariants via the joint probability distribution of six 
structure factors. In principle the approach is more 
general than Heinerman et al.'s (1978) procedure, 
which only involves triple-product magnitudes. On the 
other hand, with respect to the classical algebraic 
methods, it is able to exploit the positivity of the 
electron density. This property probably helps to 
overcome the (a, n - ~t) ambiguity, at least from a 
formal point of view. New efforts in the field will 
probably lead to more efficient formulae. 

(d) Using the presumed known coordinates of the 
ferrodoxin from Peptococcus aerogenes (Adman, 
Sieker & Jensen, 1973), which crystallizes in P212121 
with M r ~ 6000, we calculated 3328 structure factors 
up to 2/~ resolution. The eight iron atoms in the 
molecule were assumed to be anomalous scatterers 
with f '  = - 1 . 1 8  and f "  = 3.20. Our results suggest 
the following considerations: (1) for a given triplet the 
.Qi's, i = 1 . . . .  , 8, are slightly different from one 
another. For example, for the case Rh, G h = 2.44, 2.81, 
Rk, G k = 2.33, 2.42, Rh+k,  Gh+ k ---- 1.65, 2.00, -Oi = 
2.22 always for i = 1, 2 , . . . ,  8. This is mainly because 
Di ~_ 1 always, i = 1, 2, 3. Thus all the O~'s 
corresponding to a given triplet are estimated with 
about the same reliability. Such behaviour may mainly 
be due to the reason discussed in (b); (2) the O's can in 
principle be estimated everywhere between 0 and 2n, 
but the majority are actually estimated around 2n. That 
may be because (11 h - ~ 1 / ( I  n + ~ ) )  is small 
(Parthasarathy, 1967) when many identical anomalous 
scatterers are present. This situation favours estimates 
of the Ot's around 2n;* (3) the accuracy with which 
triplet phases are appraised is overestimated (see also 
Table 2 in Hauptman's paper). This may depend on the 
numerical approximations discussed in (b). 
Hauptman's results seem more accurate than ours, but 
all his calculations are carried out with double precision 
(approximately 15 significant digits) and error-free 
diffraction data. Our calculations were made by 
rescaling error-free diffraction data by a standard k 
curve. Our opinion is that the efficiency of the formulae 
is remarkably influenced by the scaling and nor- 
realization procedures of the diffraction data. 

The author is indebted to Dr J. Kroon who strongly 
encouraged him to venture on this work. Many thanks 

* Even when the triple phases are far from 2~ 

are due to Dr G. L. Cascarano for helpful discussions" 
he also wrote a computer program and performed 
calculations summarized in § 5. 

APPENDIX 

Parthasarathy & Srinivasan (1964) denote by P ~ 1 
the number of anomalous scatterers of the same type in 
the unit cell, and by Q the number of non-anomalous 
scatterers. Following their notation we write 

P 0 
tr2= ~.f~2, try= ~ f ~ ,  k ' ' - r ' ' / r '  - - jp  i j p ,  

j = l  j= l  

where k" depends on I hl. 
Our c I, c2 and c are defined as 

02 + o~- -  k"2 o~ 
C l - -  

+ + 

2k" 02 
C 2 

4k,,2o o  eT= 
+ + k , , 2  oI)2" 

Parthasarathy & Srinivasan obtain, for 

- -  

X =  
4k" °p oQ 

the following distribution: 

P(x) = 2 exp(-2x).  (A1) 

Since A, = 2x our distribution (8) coincides with (A 1). 
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